|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это. б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости? Прямой круговой конус с радиусом основания R и высотой Произведение некоторых 1986 натуральных чисел имеет ровно 1985 различных простых делителей. Сумма трёх положительных углов равна 90o. Может ли сумма косинусов двух из них быть равна косинусу третьего? |
Страница: << 1 2 [Всего задач: 7]
На доске был изображен пятиугольник, вписанный в окружность. Маша измерила его углы и у нее получилось, что они равны 80°, 90°, 100°, 130° и 140° (именно в таком порядке). Не ошиблась ли Маша?
Страница: << 1 2 [Всего задач: 7] |
|||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|