Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.

Вниз   Решение


Пусть уравнение  x³ + px + q = 0  имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения   D = (x1x2)²(x² – x3)²(x3x1)².

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем отрезки AA1, BB1 и CC1 пересекаются в точке P. Пусть la, lb, lc — прямые, соединяющие середины отрезков BC и B1C1, CA и C1A1, AB и A1B1. Докажите, что прямые la, lb и lc пересекаются в одной точке, причем эта точка лежит на отрезке PM, где M — центр масс треугольника ABC.

ВверхВниз   Решение


Сумма трёх положительных углов равна 90o. Может ли сумма косинусов двух из них быть равна косинусу третьего?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 64835  (#6)

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

На доске был изображен пятиугольник, вписанный в окружность. Маша измерила его углы и у нее получилось, что они равны 80°, 90°, 100°, 130° и 140° (именно в таком порядке). Не ошиблась ли Маша?

Прислать комментарий     Решение

Задача 104115  (#7)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические уравнения ]
[ Теорема синусов ]
Сложность: 3-
Классы: 9,10

Сумма трёх положительных углов равна 90o. Может ли сумма косинусов двух из них быть равна косинусу третьего?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .