Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Чему равна сумма цифр всех чисел от единицы до миллиарда?

Вниз   Решение


Пусть O — центр описанной окружности треугольника ABC, H — точка пересечения высот. Докажите, что a2 + b2 + c2 = 9R2 - OH2.

ВверхВниз   Решение


Даны два многочлена P(x) и Q(x) положительной степени, причём  P(P(x)) ≡ Q(Q(x))  и  P(P(P(x))) ≡ Q(Q(Q(x))).
Обязательно ли тогда  P(x) ≡ Q(x)?

ВверхВниз   Решение


На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?

ВверхВниз   Решение


Докажите, что количество частей, на которые данные прямые разбивают плоскость, равно 1 + n + $ \sum$($ \lambda$(P) - 1), причем среди этих частей 2n неограниченных.

ВверхВниз   Решение


Части, на которые плоскость разрезана прямыми. раскрашены в красный и синий цвет так, что соседние части разного цвета (см. задачу 27.1). Пусть a -- количество красных частей, b — количество синих частей. Докажите, что

a$\displaystyle \le$2b - 2 - $\displaystyle \sum$($\displaystyle \lambda$(P) - 2),

причем равенство достигается тогда и только тогда, когда красные области — треугольники и углы.

ВверхВниз   Решение


На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 104116  (#1)

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
Сложность: 2+
Классы: 7,8,9

Представьте, что куб стоит на столе на одной своей вершине (так, что верхняя вершина расположена точно над нижней) и освещён прямо сверху. Какая в этом случае получается тень от куба?
Прислать комментарий     Решение


Задача 104117  (#2)

Тема:   [ Наглядная геометрия ]
Сложность: 2
Классы: 7,8

В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики.

Прислать комментарий     Решение

Задача 88260  (#3)

Темы:   [ Разные задачи на разрезания ]
[ Наглядная геометрия ]
Сложность: 2
Классы: 5,6,7

Легко можно разрезать квадрат на два равных треугольника или два равных четырёхугольника.
А как разрезать квадрат на два равных пятиугольника или два равных шестиугольника?

Прислать комментарий     Решение

Задача 104119  (#4)

Темы:   [ Куб ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 3-
Классы: 7,8,9

На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?
Прислать комментарий     Решение


Задача 104120  (#5)

Темы:   [ Наглядная геометрия ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 7,8,9

На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .