|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Вдоль правой стороны дороги припарковано 100 машин. Среди них — 30 красных, 20 желтых и 20 розовых мерседесов. Известно, что никакие два мерседеса разного цвета не стоят рядом. Докажите, что тогда какие-то три мерседеса, стоящие подряд — одного цвета. В клетчатом прямоугольнике m×n каждая клетка может быть либо живой, либо мёртвой. Каждую минуту одновременно все живые клетки умирают, а те мёртвые, у которых было нечётное число живых соседей (по стороне), оживают. |
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?
Про положительные числа a, b, c известно, что 1/a + 1/b + 1/c ≥ a + b + c. Докажите, что a + b + c ≥ 3abc.
Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые - направо, а остальные - кругом. Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?
В клетчатом прямоугольнике m×n каждая клетка может быть либо живой, либо мёртвой. Каждую минуту одновременно все живые клетки умирают, а те мёртвые, у которых было нечётное число живых соседей (по стороне), оживают.
В ряд расположили n лампочек и зажгли некоторые из них. Каждую минуту после этого все лампочки, горевшие на прошлой минуте, гаснут, а те негоревшие лампочки, которые на прошлой минуте соседствовали ровно с одной горящей лампочкой, загораются. При каких n можно так зажечь некоторые лампочки в начале, чтобы потом в любой момент нашлась хотя бы одна горящая лампочка?
Страница: << 1 2 3 4 5 >> [Всего задач: 21] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|