Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

Вниз   Решение


Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , DAC = , ACD = , угол между ребром DC и гранью ABC равен . Найдите расстояние от точки E до плоскости BCD , угол между ребром AB и гранью ACD , а также угол между гранями ABD и ABC .

ВверхВниз   Решение


Автор: Фольклор

На координатной плоскости задан график функции  y = kx + b  (см. рисунок). В той же координатной плоскости схематически постройте график функции  y = kx² + bx.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и DC взаимно перпендикулярны, ADB = , ABD = , угол между ребром CD и гранью ABD равен , AD=a , середина ребра CD равноудалена от плоскостей ABD и ABC . Найдите ребро BC , угол CDB и угол между ребром AB и гранью BCD .

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


Автор: Иванов С.

В треугольнике ABC угол C – прямой. На стороне AC нашлась такая точка D, а на отрезке BD – такая точка K, что  ∠B = ∠KAD = ∠AKD.
Докажите, что  BK = 2DC.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 110144  (#03.4.8.6)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 4-
Классы: 7,8,9

Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

Прислать комментарий     Решение

Задача 108206  (#03.4.8.7)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Иванов С.

В треугольнике ABC угол C – прямой. На стороне AC нашлась такая точка D, а на отрезке BD – такая точка K, что  ∠B = ∠KAD = ∠AKD.
Докажите, что  BK = 2DC.

Прислать комментарий     Решение

Задача 110146  (#03.4.8.8)

Темы:   [ Необычные конструкции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 7,8,9

Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .