Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AB = AC)  угол A равен α. На стороне AB взята точка D так, что  AD = AB/n.  Найдите сумму  n – 1  углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
  а) при  n = 3;
  б) при произвольном n.

Вниз   Решение


Автор: Фольклор

Известно, что  5(а – 1) = b + a².  Сравните числа а и b.

ВверхВниз   Решение


Даны натуральное число  n > 3  и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство  

ВверхВниз   Решение


Найдите наименьшее значение функции y = (x-21)ex-20 на отрезке [19;21] .

ВверхВниз   Решение


Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.

ВверхВниз   Решение


Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.

ВверхВниз   Решение


Найдите наибольшее значение функции y = 16x-4 sin x+8 на отрезке [-;0] .

ВверхВниз   Решение


Найдите все такие простые числа p и q , что  p + q = (p – q)³.

ВверхВниз   Решение


Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

ВверхВниз   Решение


Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110055  (#01.4.11.1)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Найдите все такие простые числа p и q , что  p + q = (p – q)³.

Прислать комментарий     Решение

Задача 110056  (#01.4.11.2)

Темы:   [ Итерации ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 3+
Классы: 9,10,11

Приведённый квадратный трёхчлен  f(x) имеет два различных корня. Может ли так оказаться, что уравнение  f(f(x)) = 0  имеет три различных корня, а уравнение  f(f(f(x))) = 0  – семь различных корней?

Прислать комментарий     Решение

Задача 108223  (#01.4.11.3)

Темы:   [ Пересекающиеся окружности ]
[ Признаки и свойства касательной ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .
Прислать комментарий     Решение


Задача 110065  (#01.4.11.4)

Темы:   [ Целочисленные решетки (прочее) ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Автор: Лифшиц Ю.

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Прислать комментарий     Решение

Задача 110058  (#01.4.11.5)

Темы:   [ Периодичность и непериодичность ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 10,11

Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .