ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB, BC и AC треугольника ABC взяты точки P, M и K так, что отрезки AM, BK и CP пересекаются в одной точке и      Докажите, что P, M и K – середины сторон треугольника ABC.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 97800

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Натуральные числа M и K отличаются перестановкой цифр.
Доказать, что
  а) сумма цифр числа 2M равна сумме цифр числа 2K;
  б) сумма цифр числа M/2  равна сумме цифр числа K/2  (если M и K чётны);
  в) сумма цифр числа 5M равна сумме цифр числа 5K.

Прислать комментарий     Решение

Задача 108604

Темы:   [ Существование определенного интеграла ]
[ Теоремы Чевы и Менелая ]
[ Подобные треугольники (прочее) ]
[ Векторы сторон многоугольников ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC и AC треугольника ABC взяты точки P, M и K так, что отрезки AM, BK и CP пересекаются в одной точке и      Докажите, что P, M и K – середины сторон треугольника ABC.

Прислать комментарий     Решение

Задача 97786

Тема:   [ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Мерков А.

В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.

Прислать комментарий     Решение

Задача 97802

Темы:   [ Системы точек и отрезков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.

Прислать комментарий     Решение

Задача 97808

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Анджанс А.

Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд:  1, 2, 3, ..., 2n.  Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .