Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Два парома одновременно отходят от противоположных берегов реки и пересекают её перпендикулярно берегам. Скорости паромов постоянны, но не равны. Паромы встречаются на расстоянии 720 м от берега, после чего продолжают движение. На обратном пути они встречаются в 400 м от другого берега. Какова ширина реки?

Вниз   Решение


Антон сбежал вниз по движущемуся эскалатору и насчитал 30 ступенек. Затем он решил пробежать вверх по тому же эскалатору с той же скоростью относительно эскалатора и насчитал 150 ступенек. Сколько ступенек он насчитал, спускаясь вместе с милиционером по неподвижному эскалатору?

ВверхВниз   Решение


Семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама – за 2, малыш – за 5, а бабушка – за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя.)

ВверхВниз   Решение


Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:

Могло ли такое быть?

ВверхВниз   Решение


Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

ВверхВниз   Решение


Доказать, что  7 + 7² + ... + 74K,  где K – любое натуральное число, делится на 400.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 109004

Темы:   [ Наглядная геометрия в пространстве ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 10,11

Существуют ли в пространстве 4 точки A,B,C,D такие, что AB=CD=8 см; AC=BD=10 см; AB+BC=13 см?
Прислать комментарий     Решение


Задача 108742

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8,9

Доказать, что  7 + 7² + ... + 74K,  где K – любое натуральное число, делится на 400.

Прислать комментарий     Решение

Задача 108743

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

Прислать комментарий     Решение

Задача 108749

Темы:   [ Периметр треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8,9

Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

Прислать комментарий     Решение

Задача 109006

Тема:   [ Теорема косинусов ]
Сложность: 3
Классы: 8,9,10

Стороны треугольника a,b и c . A=60o . Доказать, что

3/(a+b+c)=1/(a+b)+1/(a+c).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .