ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Доказать, что уравнение  4k – 4l = 10n  не имеет решений в целых числах.

Вниз   Решение


В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)

ВверхВниз   Решение


Высота правильной шестиугольной пирамиды равна стороне основания. Найдите угол бокового ребра с плоскостью основания.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 6702]      



Задача 108778

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Высота правильной шестиугольной пирамиды равна стороне основания. Найдите угол бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 108785

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 108786

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 108797

Тема:   [ Правильный тетраэдр ]
Сложность: 2
Классы: 8,9

Найдите высоту правильного тетраэдра с ребром a .
Прислать комментарий     Решение


Задача 108798

Темы:   [ Правильный тетраэдр ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 8,9

Найдите объём правильного тетраэдра с ребром, равным a .
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .