Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами.

Вниз   Решение


Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

ВверхВниз   Решение


а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

ВверхВниз   Решение


Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

ВверхВниз   Решение


Положительные числа a, b и c таковы, что  abc = 1.  Докажите неравенство

+ + ≤ 1.

ВверхВниз   Решение


Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды со стороной основания a и высотой h .

ВверхВниз   Решение


На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

ВверхВниз   Решение


Высота конуса равна h , а образующая равна l . Найдите радиус основания и площадь осевого сечения.

ВверхВниз   Решение


Точка A лежит в плоскости α , ортогональная проекция отрезка AB на эту плоскость равна 1, AB = 2 . Найдите расстояние от точки B до плоскости α .

ВверхВниз   Решение


Все рёбра правильной четырёхугольной пирамиды равны a . Найдите высоту пирамиды.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 6702]      



Задача 108799

Тема:   [ Правильный тетраэдр ]
Сложность: 2
Классы: 8,9

Найдите площадь полной поверхности правильного тетраэдра с ребром, равным a .
Прислать комментарий     Решение


Задача 108805

Тема:   [ Линейные зависимости векторов ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны a . Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 108806

Темы:   [ Линейные зависимости векторов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны a . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 108807

Темы:   [ Линейные зависимости векторов ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами.
Прислать комментарий     Решение


Задача 109092

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 2
Классы: 8,9

Точка A лежит в плоскости α , ортогональная проекция отрезка AB на эту плоскость равна 1, AB = 2 . Найдите расстояние от точки B до плоскости α .
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .