ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений |
Страница: << 1 2 3 >> [Всего задач: 15]
Решить систему уравнений 1 − x1x2x3 = 0,
x1 – вещественный корень уравнения x² + ax + b = 0, x2 – вещественный корень уравнения x² – ax – b = 0.
Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
Дан равносторонний треугольник ABC. Найти множество всех таких точек D, что треугольники ABD и BCD - равнобедренные (отрезки AB и BC могут служить как основаниями, так и боковыми сторонами).
MA и MB – касательные к окружности O,; C – точка внутри окружности, лежащая на дуге AB с центром в точке M . Доказать, что отличные от A и B точки пересечения прямых AC и BC с окружностью O лежат на противоположных концах одного диаметра.
Страница: << 1 2 3 >> [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке