Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

Вниз   Решение


Автор: Фольклор

Известно, что числа а, b, c и d – целые и  .  Может ли выполняться равенство  аbcd = 2012?

ВверхВниз   Решение


Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что  HaHb || LaLb.  Верно ли, что  AC = BC?

ВверхВниз   Решение


На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.

ВверхВниз   Решение


В треугольнике ABC  AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что  B1K || BC  и  MA1 || AC.  Докажите, что  ∠AA1K = ∠BB1M.

ВверхВниз   Решение


Доказать неравенство  abc² + bca² + cab² ≤ a4 + b4 + c4.

ВверхВниз   Решение


Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству  ab + cd = ac – 10bd.
Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.

ВверхВниз   Решение


Разрежьте первый параллелограмм на три части и сложите из них второй.

ВверхВниз   Решение


Биссектриса, медиана и высота некоторого треугольника, проведённые из трёх разных вершин, пересекаются в одной точке и делят этот треугольник на шесть треугольников (см.рисунок). Площади трёх закрашенных треугольников равны. Верно ли, что исходный треугольник равносторонний?

ВверхВниз   Решение


Петя играет в игру-стрелялку. Если он наберёт менее 1000 очков, то компьютер добавит ему 20% от его результата. Если он наберёт от 1000 до 2000 очков, то компьютер добавит ему 20% от первой тысячи очков и 30% от оставшегося количества очков. Если Петя наберёт более 2000 очков, то компьютер добавит ему 20% от первой тысячи очков, 30% от второй тысячи и 50% от оставшегося количества. Сколько призовых очков получил Петя, если по окончании игры у него было 2370 очков?

ВверхВниз   Решение


Пусть ABCD – четырёхугольник с параллельными сторонами AD и BC; M и N – середины его сторон AB и CD соответственно. Прямая MN делит пополам отрезок, соединяющий центры окружностей, описанных около треугольников ABC и ADC. Докажите, что ABCD – параллелограмм.

ВверхВниз   Решение


Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 78204

Темы:   [ Перебор случаев ]
[ Раскладки и разбиения ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

Прислать комментарий     Решение

Задача 109185

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3-
Классы: 7,8,9

Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.

Прислать комментарий     Решение

Задача 60279

Темы:   [ Индукция (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

Прислать комментарий     Решение

Задача 109042

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 7,8,9

Доказать неравенство  abc² + bca² + cab² ≤ a4 + b4 + c4.

Прислать комментарий     Решение

Задача 109039

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 7,8,9

На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .