|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого. В треугольнике ABC угол C равен 90o , sin A = Докажите, что для натуральных чисел k, m и n справедливо неравенство [k, m][m, n][n, k] ≥ [k, m, n]². |
Страница: 1 2 >> [Всего задач: 8]
Даны три приведённых квадратных трехчлена: P1(x), P2(x) и P3(x). Докажите, что уравнение |P1(x)| + |P2(x)| = |P3(x)| имеет не более восьми корней.
На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?
В правильном (6n+1)-угольнике K вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что для натуральных чисел k, m и n справедливо неравенство [k, m][m, n][n, k] ≥ [k, m, n]².
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|