ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. Внутри прямого угла KLM взята точка P. Окружность S1 с центром O1 касается сторон LK и LP угла KLP в точках A и D соответственно, а окружность S2 с центром O2 такого же радиуса касается сторон угла MLP, причём стороны LP – в точке B. Оказалось, что точка O1 лежит на отрезке AB. Пусть C – точка пересечения прямых O2D и KL. Докажите, что BC – биссектриса угла ABD. Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз? Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья? В равнобедренном треугольнике ABC (AB = BC) на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что BM || AC. В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов? В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо два, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре? |
Страница: << 1 2 [Всего задач: 8]
Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной прямой тогда и только тогда, когда каждый многоугольник можно отделить от двух других прямой (т.е. существует прямая такая, что этот многоугольник и два остальных лежат по ее разные стороны).
Через вершину A тетраэдра ABCD проведена плоскость, касательная к описанной около него сфере. Докажите, что линии пересечения этой плоскости с плоскостями граней ABC, ACD и ABD образуют шесть равных углов тогда и только тогда, когда AB·CD = AC·BD = AD·BC.
В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо два, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке