ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Одна окружность находится внутри другой. Их радиусы равны 28 и 12, а кратчайшее расстояние между точками этих окружностей равно 10. Найдите расстояние между центрами.

Вниз   Решение


По окружности стоит 6 чисел; каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел равна 1.

a) Найдите набор чисел, удовлетворяющий данному условию.

б) Сколько различных таких наборов существует? Решения, получающиеся друг из друга поворотом окружности, считаются одинаковыми.

ВверхВниз   Решение


В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо два, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 109688  (#99.5.11.6)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5+
Классы: 8,9,10,11

Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной прямой тогда и только тогда, когда каждый многоугольник можно отделить от двух других прямой (т.е. существует прямая такая, что этот многоугольник и два остальных лежат по ее разные стороны).
Прислать комментарий     Решение


Задача 109689  (#99.5.11.7)

Темы:   [ Сфера, описанная около тетраэдра ]
[ Касательные к сферам ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 10,11

Через вершину A тетраэдра ABCD проведена плоскость, касательная к описанной около него сфере. Докажите, что линии пересечения этой плоскости с плоскостями граней ABC, ACD и ABD образуют шесть равных углов тогда и только тогда, когда  AB·CD = AC·BD = AD·BC.

Прислать комментарий     Решение

Задача 109690  (#99.5.11.8)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 8,9,10,11

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо два, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .