ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M .

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 109805  (#04.5.10.6)

Темы:   [ Связность и разложение на связные компоненты ]
[ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 5
Классы: 9,10,11

В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.

Прислать комментарий     Решение

Задача 109806  (#04.5.10.7)

Темы:   [ Свойства симметрии и центра симметрии ]
[ Признаки и свойства параллелограмма ]
[ Покрытия ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Гомотетичные многоугольники ]
Сложность: 5+
Классы: 8,9,10

Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M .
Прислать комментарий     Решение


Задача 109807  (#04.5.10.8)

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число  n > 101000,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .