ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Три окружности ω1, ω2 и ω3 радиуса r проходят через точку S и касаются внутренним образом окружности ω радиуса R (R > r) в точках T1, T2 и T3 соответственно. Докажите, что прямая T1T2 проходит через вторую (отличную от S) точку пересечения окружностей ω1 и ω2. Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел a, b, стоящих в соседних по стороне клетках, хотя бы одно из уравнений x² – ax + b = 0 и x² – bx + a = 0 имеет два целых корня? В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11? Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые? Двое играют в такую игру. В начале по кругу стоят числа 1, 2, 3, 4. Каждым своим ходом первый прибавляет к двум соседним числам по 1, а второй меняет любые два соседних числа местами. Первый выигрывает, если все числа станут равными. Может ли второй ему помешать? Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.
Пусть M={x1, .., x30} – множество, состоящее из 30 различных положительных
чисел; An ( 1 Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов? В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке. На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть? В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону. Найдите наименьшее натуральное n, для которого существует такое m, что Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого. В вершинах выпуклого n-угольника расставлены m фишек (m > n). За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n. В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.) Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным? |
Страница: 1 2 >> [Всего задач: 8]
Мороженое стоит 2000 рублей. У Пети имеется 4005 – 399²·(400³ + 2·400² + 3·400 + 4) рублей. Достаточно ли у Пети денег на мороженое?
Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5.
Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые?
На столе лежат n спичек (n > 1). Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до n – 1, а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш.
Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке