Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На столе лежит кубик, на его верхней стороне нарисована картинка. Кубик несколько раз перекатывали по столу через ребро, после чего он вновь оказался на прежнем месте. Могло ли оказаться, что картинка повернута а)на 180 градусов по сравнению с исходным положением; б) на 90 градусов?

Вниз   Решение


Антон сбежал вниз по движущемуся эскалатору и насчитал 30 ступенек. Затем он решил пробежать вверх по тому же эскалатору с той же скоростью относительно эскалатора и насчитал 150 ступенек. Сколько ступенек он насчитал, спускаясь вместе с милиционером по неподвижному эскалатору?

ВверхВниз   Решение


В сундуке лежали два колпака белого цвета и три черного. В темную комнату завели трех мудрецов и надели на них какие-то колпаки из сундука. Потом вывели в другую комнату. Они не видят, какого цвета колпак на них, но видят колпакки других. Через некоторое время один из них догадался, какого цвета на нем колпак. Как? Какого цвета был колпак?

ВверхВниз   Решение


Постройте график. Постройте график функции y = 3x + |5x − 10|.

ВверхВниз   Решение


Баба-Яга и Кащей собрали некоторое количество мухоморов. Количество крапинок на мухоморах Бабы-Яги в 13 раз больше, чем на мухоморах Кащея, но после того, как Баба-Яга отдала Кащею свой мухомор с наименьшим числом крапинок, на её мухоморах стало крапинок только в 8 раз больше, чем у Кащея. Докажите, что в начале у Бабы-Яги было не более 23 мухоморов.

ВверхВниз   Решение


Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?

ВверхВниз   Решение


Имеются два сосуда емкостью 1 л и 2 л. Из содержимого приготовили 0,5 л смеси, содержащей 40% яблочного сока, и 2,5 л смеси, содержащей 88% яблочного сока. Каково процентное содержание яблочного сока в сосудах?

ВверхВниз   Решение


Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.

ВверхВниз   Решение


Вырезаем из прямоугольника. Из прямоугольника 13 × 7 вырежьте 15 прямоугольников 2 × 3.

ВверхВниз   Решение


Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 108110  (#98.4.11.2)

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
[ Признаки и свойства касательной ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Сонкин М.

Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.

Прислать комментарий     Решение

Задача 109944  (#98.4.11.3)

Темы:   [ Системы точек ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
Прислать комментарий     Решение


Задача 109937  (#98.4.11.4)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Процессы и операции ]
[ Перебор случаев ]
[ Инварианты ]
Сложность: 4-
Классы: 9,10,11

Имеется таблица n×n, в  n – 1  клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?

Прислать комментарий     Решение

Задача 109938  (#98.4.11.5)

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

На доске записано целое число. Его последняя цифра запоминается, затем стирается и, умноженная на 5, прибавляется к тому числу, что осталось на доске после стирания. Первоначально было записано число 71998. Может ли после применения нескольких таких операций получиться число 19987?
Прислать комментарий     Решение


Задача 109939  (#98.4.11.6)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10,11

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .