ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Вниз   Решение


Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110113  (#02.4.9.8)

Тема:   [ Взвешивания ]
Сложность: 5
Классы: 7,8,9

Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.
Прислать комментарий     Решение


Задача 110093  (#02.4.10.1)

Темы:   [ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 9,10

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

Прислать комментарий     Решение

Задача 110094  (#02.4.10.2)

Темы:   [ Целочисленные решетки (прочее) ]
[ Выпуклые многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Деление с остатком ]
Сложность: 4
Классы: 8,9,10

В выпуклом многоугольнике на плоскости содержится не меньше  m² + 1  точек с целыми координатами.
Докажите, что в нём найдутся  m + 1  точек с целыми координатами, которые лежат на одной прямой.

Прислать комментарий     Решение

Задача 108217  (#02.4.10.3)

Темы:   [ Поворотная гомотетия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9,10,11

Серединный перпендикуляр к стороне AC треугольника ABC пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.

Прислать комментарий     Решение

Задача 110096  (#02.4.10.4)

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Храмцов Д.

Набор чисел a0, a1, ..., an удовлетворяет условиям:  a0 = 0,  0 ≤ ak+1ak ≤ 1  при  k = 0, 1, ..., n – 1.  Докажите неравенство  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .