|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что для любого натурального m существует число Фибоначчи Fn (n ≥ 1), кратное m. Дана функция f(x)= Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом). На доске написаны числа 1, 2, 3, …, 20. Разрешается стереть любые два числа a и b и заменить их суммой ab + a + b. Какое число может получиться после 19 таких операций? Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC . |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]
Известно, что
На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?
В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°.
При изготовлении партии из N ≥ 5 монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково). Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь, убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|