Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Вниз   Решение


Автор: Фольклор

В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.

ВверхВниз   Решение


В некотором государстве человек может быть зачислен в полицию только в том случае, если он выше ростом чем 80% (или больше) его соседей. Чтобы доказать свое право на зачисление в полицию, человек сам называет число R (радиус), после чего его "соседями" считаются все, кто живёт на расстоянии меньше R от него (число соседей, разумеется, должно быть не нулевое). В этом же государстве человек освобождается от службы в армии только в том случае, если он ниже ростом, чем 80% (или больше) его соседей. Определение "соседей" аналогично; человек сам называет число r (радиус) и т. д., причём R и r не обязательно совпадают. Может ли случиться, что не менее 90% населения имеют право на зачисление в полицию и одновременно не менее 90% населения освобождены от армии? (Каждый человек проживает в определенной точке плоскости.)

ВверхВниз   Решение


Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110207  (#06.4.10.1)

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

Прислать комментарий     Решение

Задача 110208  (#06.4.10.2)

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Шахматные доски и шахматные фигуры ]
[ Раскраски ]
Сложность: 4-
Классы: 8,9,10

Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.)  Докажите, что количество хороших раскрасок не меньше чем 68.

Прислать комментарий     Решение

Задача 110216  (#06.4.10.3)

Темы:   [ Биссектриса делит дугу пополам ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC .
Прислать комментарий     Решение


Задача 110209  (#06.4.10.4)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Доказательство от противного ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

Даны  n > 1  приведённых квадратных трёхчленов  x² – a1x + b1,  ...,  x² – anx + bn,  причём все 2n чисел  a1, ..., an, b1, ..., bn  различны.
Может ли случиться, что каждое из чисел  a1, ..., an, b1, ..., bn  является корнем одного из этих трёхчленов?

Прислать комментарий     Решение

Задача 110210  (#06.4.10.5)

Темы:   [ Тригонометрические неравенства ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10,11

Докажите, что для каждого x такого, что sin x 0 , найдется такое натуральное n , что | sin nx| .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .