ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 111706  (#1)

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

Существует ли правильный многоугольник, в котором ровно половина диагоналей параллельна сторонам?

Прислать комментарий     Решение

Задача 111707  (#2)

Темы:   [ Касающиеся окружности ]
[ Концентрические окружности ]
[ Симметрия и построения ]
[ Окружности (построения) ]
Сложность: 4-
Классы: 8,9

Для данной пары окружностей постройте две концентрические окружности, каждая из которых касается двух данных. Сколько решений имеет задача, в зависимости от расположения окружностей?
Прислать комментарий     Решение


Задача 111708  (#3)

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.

Прислать комментарий     Решение

Задача 111709  (#4)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Биссектрисы двух углов вписанного четырёхугольника параллельны.
Докажите, что сумма квадратов двух сторон четырёхугольника равна сумме квадратов двух других сторон.

Прислать комментарий     Решение

Задача 111710  (#5)

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Четырехугольники (построения) ]
Сложность: 4-
Классы: 8,9

Постройте квадрат ABCD , если даны его вершина A и расстояния от вершин B и D до фиксированной точки плоскости O .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .