ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 111794  (#08.4.11.1)

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 9,10,11

Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни.

Прислать комментарий     Решение

Задача 111795  (#08.4.11.2)

Темы:   [ Подсчет двумя способами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
Прислать комментарий     Решение


Задача 111805  (#08.4.11.3)

Темы:   [ Арифметическая прогрессия ]
[ Целая и дробная части. Принцип Архимеда ]
[ Ограниченность, монотонность ]
Сложность: 4
Классы: 9,10,11

Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
Прислать комментарий     Решение


Задача 111797  (#08.4.11.4)

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Углы между биссектрисами ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средняя линия треугольника ]
Сложность: 5-
Классы: 9,10,11

Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что AKB'+ BKA'= ALB'+ BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .
Прислать комментарий     Решение


Задача 111806  (#08.4.11.5)

Темы:   [ Математическая логика (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .