Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Вписанная окружность касается сторон AB и AC треугольника ABC в точках X и Y соответственно. Точка K– середина дуги AB описанной окружности треугольника ABC (не содержащей точки C). Оказалось, что прямая XY делит отрезок AK пополам. Чему может быть равен угол BAC?

Вниз   Решение


На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?

ВверхВниз   Решение


Автор: Замков В.

Натуральное число n назовём хорошим, если каждое из чисел n,   n + 1,  n + 2  и  n + 3  делится на сумму своих цифр. (Например,  n = 60398  – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?

ВверхВниз   Решение


На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?

ВверхВниз   Решение


На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу?

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что  MC = AC  и  NB = AB.  Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.

ВверхВниз   Решение


300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.

ВверхВниз   Решение


Из колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту
  а) спрятали;
  б) отдали Коле.
Гриша и Лёша могут по очереди сообщать вслух любую информацию о своих картах. Могут ли они сообщить друг другу свои карты так, чтобы при этом Коля не смог вычислить местонахождение ни одной из тех карт, которых он не видит? (Гриша и Лёша не договаривались о каком-либо особом способе общения; все переговоры происходят открытым текстом.)

ВверхВниз   Решение


Пусть α и β – острые углы такие, что sin2α + sin2β < 1 . Докажите, что sin2α + sin2β < sin2(α + β) .

ВверхВниз   Решение


Уравнение  x² + ax + b = 0  имеет два различных действительных корня.
Докажите, что уравнение  x4 + ax³ + (b – 2)x² – ax + 1 = 0  имеет четыре различных действительных корня.

ВверхВниз   Решение


Окружность S1, проходящая через вершины A и B треугольника ABC, пересекает сторону BC в точке D. Окружность S2, проходящая через вершины B и C, пересекает сторону AB в точке E и окружность S1 вторично в точке F. Оказалось, что точки A, E, D, C лежат на окружности S3 с центром O. Докажите, что угол BFO – прямой.

ВверхВниз   Решение


Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен  (ax + b)1000 – (cx + d)1000  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 115417  (#06.4.9.6)

Темы:   [ Простые числа и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Необычные конструкции ]
Сложность: 4
Классы: 8,9

Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?

Прислать комментарий     Решение

Задача 115418  (#06.4.9.7)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Вспомогательная раскраска (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9

Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья?

Прислать комментарий     Решение

Задача 115419  (#06.4.9.8)

Темы:   [ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Треугольник (построения) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
Сложность: 5-
Классы: 8,9,10

Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?

Прислать комментарий     Решение

Задача 115404  (#06.4.10.1)

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен  (ax + b)1000 – (cx + d)1000  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.

Прислать комментарий     Решение

Задача 115413  (#06.4.10.2)

Темы:   [ Биссектриса делит дугу пополам ]
[ Диаметр, основные свойства ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательная окружность ]
Сложность: 4+
Классы: 8,9

В треугольнике  ABC проведена биссектриса  BD (точка  D лежит на отрезке  AC ). Прямая  BD пересекает окружность  Ω , описанную около треугольника  ABC , в точках  B и  E . Окружность  ω , построенная на отрезке  DE как на диаметре, пересекает окружность  Ω в точках  E и  F . Докажите, что прямая, симметричная прямой  BF относительно прямой  BD , содержит медиану треугольника  ABC .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .