ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 115993

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Расстояние от точки до плоскости ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

В кубе АВСDA'B'C'D' с ребром 1 точки T, Р и Q – центры граней AA'B'B, A'B'C'D' и BB'C'C соответственно.
Найдите расстояние от точки Р до плоскости АTQ.

Прислать комментарий     Решение

Задача 115992

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Разложение на множители ]
[ Исследование квадратного трехчлена ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

Прислать комментарий     Решение

Задача 115995

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Докажите, что если  x > 0,  y > 0,  z > 0 и  x² + y² + z² = 1,  то  ,  и укажите, в каком случае достигается равенство.

Прислать комментарий     Решение

Задача 116018

Тема:   [ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10

Автор: Фольклор

Для различных положительных чисел а и b выполняется равенство  .  Докажите, что а и b – взаимно обратные числа.

Прислать комментарий     Решение

Задача 116020

Темы:   [ Уравнения в целых числах ]
[ Теория чисел. Делимость (прочее) ]
[ Простые числа и их свойства ]
Сложность: 4-
Классы: 9,10

Автор: Фольклор

Найдите все простые числа p, q и r, для которых выполняется равенство:  p + q = (p – q)r.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .