ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан произвольный треугольник ABC. Постройте прямую, проходящую через вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых равны.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116196  (#1)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

Прислать комментарий     Решение

Задача 116197  (#2)

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9

Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.

Прислать комментарий     Решение

Задача 116198  (#3)

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Hа сторонах AB, BC и AC треугольника ABC выбраны точки C', A' и B' соответственно так, что угол A'C'B' — прямой. Докажите, что отрезок A'B' длиннее диаметра вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116199  (#4)

Темы:   [ Построения (прочее) ]
[ Вписанные и описанные окружности ]
[ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

Дан произвольный треугольник ABC. Постройте прямую, проходящую через вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых равны.

Прислать комментарий     Решение

Задача 116200  (#5)

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Композиции поворотов ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

Hа сторонах треугольника ABC во внешнюю сторону построены правильные треугольники ABC1, BCA1, CAB1. Hа отрезке A1B1 во внешнюю сторону треугольника A1B1C1 построен правильный треугольник A1B1C2. Докажите, что C – середина отрезка C1C2.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .