ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BN и CK пересекаются в точке O. Найдите площадь треугольника BOK. Решение |
Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 7526]
Точка M расположена на стороне AB параллелограмма ABCD, причём BM : MA = 1 : 2. Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.
Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AM : MB = 1 : 2, AN : NC = 3 : 2. Прямая MN пересекает продолжение стороны BC в точке F. Найдите CF : BC.
На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём BA1 : A1C = CB1 : B1A = AC1 : C1B = 2 : 3. Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1.
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BM и CN пересекаются в точке O. Найдите площадь треугольника BOC.
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BN и CK пересекаются в точке O. Найдите площадь треугольника BOK.
Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 7526] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|