Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 69]
|
|
Сложность: 3 Классы: 7,8,9
|
В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?
|
|
Сложность: 3 Классы: 7,8,9
|
Для чисел а, b и с, отличных от нуля, выполняется равенство: a²(b + c – a) = b²(c + a – b) = c²(a + b – c). Следует ли из этого, что а = b = c?
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите все неотрицательные решения системы уравнений:
x³ = 2y² – z,
y³ = 2z² – x,
z³ = 2x² – y.
|
|
Сложность: 3+ Классы: 9,10,11
|
В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?
|
|
Сложность: 3+ Классы: 9,10,11
|
В шахматном турнире было 12 участников (каждый сыграл с каждым по одному разу).
По итогам турнира оказалось, что есть 9 участников, каждый из которых набрал не более 4 очков. Известно, что Петя набрал ровно 9 очков. Как он сыграл с каждым из двух остальных шахматистов? (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 69]