ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Построить прямоугольный треугольник, зная, что часть катета от вершины острого угла до точки касания с вписанной окружностью равна данному отрезку m , а противолежащий этому катету угол равен данному углу α . На рисунке изображен график функции у = kx + b . Сравните |k| и |b|. Найдите наименьшее натуральное значение n, при котором число n! делится на 990. Внутри правильного n-угольника со стороной a вписано n равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов. Известно, что |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 557]
Верно ли, что если b > a + c > 0, то квадратное уравнение ax² + bx + c = 0 имеет два корня?
Окружность проходит через вершины В и D параллелограмма АВСD и пересекает его стороны АВ, ВС, СD и DA в точках M, N, P и K соответственно. Докажите, что MK || NP.
Известно, что
Решите уравнение: (x + 2010)(x + 2011)(x + 2012) = (x + 2011)(x + 2012)(x + 2013).
Найдите наименьшее натуральное значение n, при котором число n! делится на 990.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 557]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке