ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи 12 кузнецов должны подковать 15 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратить на работу? (Учтите, лошадь не может стоять на двух ногах.) Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика? Найдите наименьшее натуральное значение n, при котором число n! делится на 990. |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559]
Найдите наименьшее натуральное значение n, при котором число n! делится на 990.
Может ли n! оканчиваться ровно на пять нулей?
На сколько нулей оканчивается число 100!?
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось АБ×ВГ = ДДЕЕ. Докажите, что он где-то ошибся.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке