|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме. Докажите, что числа Каталана удовлетворяют рекуррентному соотношению
Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0. Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей. Найдите наименьшее натуральное значение n, при котором число n! делится на 990. |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559]
Найдите наименьшее натуральное значение n, при котором число n! делится на 990.
Может ли n! оканчиваться ровно на пять нулей?
На сколько нулей оканчивается число 100!?
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось АБ×ВГ = ДДЕЕ. Докажите, что он где-то ошибся.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|