ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]      



Задача 116739

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

Прислать комментарий     Решение

Задача 116740

Темы:   [ Разложение на множители ]
[ Перебор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Для чисел а, b и с, отличных от нуля, выполняется равенство:  a²(b + c – a) = b²(c + a – b) = c²(a + b – c).   Следует ли из этого, что  а = b = c?

Прислать комментарий     Решение

Задача 116439

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Найдите все неотрицательные решения системы уравнений:
    x³ = 2y² – z,
    y³ = 2z² – x,
    z³ = 2x² – y.

Прислать комментарий     Решение

Задача 116441

Темы:   [ Теория графов (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?

Прислать комментарий     Решение

Задача 116444

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

В шахматном турнире было 12 участников (каждый сыграл с каждым по одному разу). По итогам турнира оказалось, что есть 9 участников, каждый из которых набрал не более 4 очков. Известно, что Петя набрал ровно 9 очков. Как он сыграл с каждым из двух остальных шахматистов? (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .