Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?

Вниз   Решение


Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 117000  (#7.1)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Астролог считает, что 2013 год счастливый, потому что 2013 нацело делится на сумму  20 + 13.
Будет ли когда-нибудь два счастливых года подряд?

Прислать комментарий     Решение

Задача 117001  (#7.2)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Автор: Усов С.В.

В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
  Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
  Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.

Прислать комментарий     Решение

Задача 117002  (#7.3)

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 5,6,7

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.

Прислать комментарий     Решение

Задача 117003  (#7.4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Кооперативные алгоритмы ]
Сложность: 3+
Классы: 5,6,7

Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?

Прислать комментарий     Решение

Задача 117004  (#7.5)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Двоичная система счисления ]
Сложность: 3
Классы: 5,6,7

Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .