ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать?

Вниз   Решение


Состоятельный Крот осенью добыл 8 мешков зерна. На каждый зимний месяц ему необходимо либо 3 мешка зерна, либо 1 мешок зерна и 3 мешка пшена. Крот может обменивать у других кротов 1 мешок зерна на 2 мешка пшена. Но в его нору не влезает больше 12 мешков, а зимой Крот из норы не выходит и не может заниматься обменом. Помогите ему сделать запасы на три месяца.

ВверхВниз   Решение


Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_1,\ldots,x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. Когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0\leqslant x_1\leqslant\ldots\leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?

ВверхВниз   Решение


В государстве 100 городов, и из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 30415  (#001)

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

Между девятью планетами Солнечной системы введено космическое сообщение. Ракеты летают по следующим маршрутам: Земля – Меркурий, Плутон – Венера, Земля – Плутон, Плутон – Меркурий, Меркурий – Венера, Уран – Нептун, Нептун – Сатурн, Сатурн – Юпитер, Юпитер – Марс и Марс – Уран. Можно ли добраться с Земли до Марса?

Прислать комментарий     Решение

Задача 30416  (#003)

Тема:   [ Обход графов ]
Сложность: 3
Классы: 6,7

Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки.
Можно ли обойти её ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?

Прислать комментарий     Решение

Задача 30417  (#004)

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

В стране Цифра есть 9 городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, составленное из цифр-названий этих городов, делится на 3. Можно ли добраться из города 1 в город 9?

Прислать комментарий     Решение

Задача 30418  (#005)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

Прислать комментарий     Решение

Задача 30419  (#006)

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

В государстве 100 городов, и из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .