ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите периметр треугольника, один из углов которого равен α , а радиусы вписанной и описанной окружностей равны r и R .
Центр окружности, описанной около треугольника, совпадает с центром вписанной окружности. Найдите углы треугольника.
За один ход разрешается или удваивать число, или стирать его последнюю цифру. Можно ли за несколько ходов получить из числа 458 число 14? Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM. Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти. Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом? Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n. Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Гипотенуза AB прямоугольного треугольника ABC равна 9, катет BC равен 3. На гипотенузе взята точка M, причём AM : MB = 1 : 2. Найдите CM.
Докажите, что все числа ряда
|
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 559]
Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.
Найдите четырехзначное число, являющееся точным квадратом, первые две цифры которого равны между собой и последние две цифры которого также равны между собой.
Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.
К числу справа приписывают тройки. Докажите, что когда-нибудь получится составное число.
Докажите, что все числа ряда
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке