Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

M — середина высоты BD в равнобедренном треугольнике ABC. Точка M служит центром окружности радиуса MD. Найдите угловую величину дуги окружности, заключённой между сторонами BA и BC, если $ \angle$BAC = 65o.

Вниз   Решение


Какое наименьшее количество трехклеточных уголков можно разместить в квадрате 8× 8 так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?

ВверхВниз   Решение


Высота конуса равна h , а образующая равна l . Найдите радиус основания и площадь осевого сечения.

ВверхВниз   Решение


Найдите наименьшее число, дающее следующие остатки: 1 – при делении на 2, 2 – при делении на 3, 3 – при делении на 4, 4 – при делении на 5, 5 – при делении на 6.

ВверхВниз   Решение


Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

ВверхВниз   Решение


В пространстве даны точки O1, O2, O3 и точка A. Точка A симметрично отражается относительно точки O1, полученная точка A1 -- относительно O2, полученная точка A2 — относительно O3. Получаем некоторую точку A3, которую также последовательно отражаем относительно O1, O2, O3. Доказать, что полученная точка совпадает с A.

ВверхВниз   Решение


Пусть p и q – различные простые числа. Докажите, что
  а)  pq + qp ≡ p + q (mod pq);

  б)   – чётное число, если  p, q ≠ 2.

Вверх   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 559]      



Задача 30678  (#092)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Докажите, что число  30239 + 23930  составное.

Прислать комментарий     Решение

Задача 30679  (#093)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Пусть p – простое число. Докажите, что  (a + b)pap + bp (mod p)  для любых целых a и b.

Прислать комментарий     Решение

Задача 30680  (#094)

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Сумма трёх чисел a, b и c делится на 30. Докажите, что  a5 + b5 + c5  также делится на 30.

Прислать комментарий     Решение

Задача 30681  (#095)

Тема:   [ Малая теорема Ферма ]
Сложность: 4-
Классы: 9,10

Пусть p и q – различные простые числа. Докажите, что
  а)  pq + qp ≡ p + q (mod pq);

  б)   – чётное число, если  p, q ≠ 2.

Прислать комментарий     Решение

Задача 30682  (#096)

Темы:   [ Малая теорема Ферма ]
[ Принцип Дирихле (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10

Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого  ab ≡ 1 (mod p).

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .