ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Пусть p – простое число, отличное от 3. Докажите, что число 1...1 (p единиц) не делится на p. б) Пусть p > 5 – простое число. Докажите, что число 1...1 (p – 1 единица) делится на p. Решение |
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 559]
Пусть n – натуральное число, не кратное 17. Докажите, что либо n8 + 1, либо n8 – 1 делится на 17.
а) Пусть p – простое число, отличное от 3. Докажите, что число 1...1 (p единиц) не делится на p. б) Пусть p > 5 – простое число. Докажите, что число 1...1 (p – 1 единица) делится на p.
Докажите, что при любом простом p делится на p.
а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 559] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|