ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно. Решить в целых числах уравнение xy/z + xz/y + yz/x = 3. Докажите, что для любого выпуклого многогранника имеет место соотношение
B - P + Г = 2,
где B — число его вершин,
P — число ребер, Г — число граней.
За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке? Докажите, что если a1 = a2 и b1 = b2 (см. рис.), то x = y. Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях? Сколько существует (невырожденных) треугольников периметра 100 с целыми длинами сторон? Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей. Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]
Сколько различных четырёхзначных чисел, делящихся на 4, можно составить из цифр 1, 2, 3 и 4,
Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях?
а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
Сколькими способами из полной колоды (52 карты) можно выбрать
Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке