ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Шлейфер Р.

На доске выписаны числа от 1 до 50. Разрешено стереть любые два числа и вместо них записать одно число – модуль их разности. После 49-кратного повторения указанной процедуры на доске останется одно число. Какое это может быть число?

Вниз   Решение


В саду у Ани и Вити росло 2006 розовых кустов. Витя полил половину всех кустов, и Аня полила половину всех кустов. При этом оказалось, что ровно три куста, самые красивые, были политы и Аней, и Витей. Сколько розовых кустов остались не политыми?

ВверхВниз   Решение


На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путник встретил троих островитян и спросил каждого из них: ''Сколько рыцарей среди твоих спутников?''. Первый ответил: ''Ни одного''. Второй сказал: ''Один''. Что сказал третий?

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
  а) При каком положении точки X длина отрезка MN будет наименьшей?
  б) При каком положении точки X площадь четырёхугольника CMXN будет наибольшей?

ВверхВниз   Решение


В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4.
Докажите, что нельзя удалить ребро так, чтобы граф распался на две изоморфные компоненты связности.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



Задача 30780  (#002)

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

Прислать комментарий     Решение

Задача 30781  (#003)

Темы:   [ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8

Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.

Прислать комментарий     Решение

Задача 30782  (#004)

Темы:   [ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Верно ли, что два графа изоморфны, если
  а) у них по 10 вершин, степень каждой из которых равна 9?
  б) у них по 8 вершин, степень каждой из которых равна 3?
  в) они связны, без циклов и содержат по 6 рёбер?

Прислать комментарий     Решение

Задача 30783  (#005)

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4.
Докажите, что нельзя удалить ребро так, чтобы граф распался на две изоморфные компоненты связности.

Прислать комментарий     Решение

Задача 30784  (#006)

Тема:   [ Деревья ]
Сложность: 2+
Классы: 7,8

Докажите, что граф, в котором каждые две вершины соединены ровно одним простым путем, является деревом.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .