|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на
окружности круглого острова. Их связывает плоская сеть дорог, на которых могут
быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются
дороги. На всех участках дорог введено одностороннее движение так, что, выехав
от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть fij означает число различных путей, идущих из порта i в порт j. Докажите неравенство f14f23 ≥ f13f24.
Зачеркните все шестнадцать точек, изображённых на рисунке, шестью отрезками, не отрывая карандаша от бумаги и не проводя отрезков по линиям сетки. Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.
Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф. |
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 559]
Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.
В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Докажите, что связный граф, у которого число рёбер на единицу меньше числа вершин, является деревом.
Волейбольная сетка имеет вид прямоугольника размером 50×600 клеток.
В некоторой стране 30 городов, причём каждый соединён с каждым дорогой.
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 559] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|