ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

  а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на окружности круглого острова. Их связывает плоская сеть дорог, на которых могут быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются дороги. На всех участках дорог введено одностороннее движение так, что, выехав от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть  fij  означает число различных путей, идущих из порта i в порт j. Докажите неравенство   f14f23f13f24.
  б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6 (по кругу в этом порядке), то   f16f25f34 + f15f24f36 + f14f26f35f16f24f35 + f15f26f34 + f14f25f36.

Вниз   Решение


Зачеркните все шестнадцать точек, изображённых на рисунке, шестью отрезками, не отрывая карандаша от бумаги и не проводя отрезков по линиям сетки.

ВверхВниз   Решение


Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.

ВверхВниз   Решение


Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.

Вверх   Решение

Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 559]      



Задача 30788  (#010)

Тема:   [ Деревья ]
Сложность: 3-
Классы: 7,8

Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.

Прислать комментарий     Решение

Задача 30789  (#011)

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Сколько в этой стране дорог?

Прислать комментарий     Решение

Задача 30790  (#012)

Тема:   [ Деревья ]
Сложность: 4-
Классы: 8

Докажите, что связный граф, у которого число рёбер на единицу меньше числа вершин, является деревом.

Прислать комментарий     Решение

Задача 30791  (#013)

Тема:   [ Деревья ]
Сложность: 4-
Классы: 8,9

Волейбольная сетка имеет вид прямоугольника размером 50×600 клеток.
Какое наибольшее число верёвочек можно перерезать так, чтобы сетка не распалась на куски?

Прислать комментарий     Решение

Задача 30792  (#014)

Темы:   [ Деревья ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9

В некоторой стране 30 городов, причём каждый соединён с каждым дорогой.
Какое наибольшее число дорог можно закрыть на ремонт так, чтобы из каждого города можно было проехать в любой другой?

Прислать комментарий     Решение

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .