ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD. Какое число больше: 3111 или 1714? В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю. Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.) Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах. a1, a2, ..., an – такие числа, что a1 + a2 + ... + an = 0. Доказать, что в этом случае справедливо соотношение S = a1a2 + a1a3 + ... + an–1an ≤ 0 Докажите, что если при аффинном (не тождественном) преобразовании L
каждая точка некоторой прямой l переходит в себя, то все прямые
вида ML(M), где в качестве M берутся произвольные точки, не
лежащие на прямой l, параллельны друг другу.
Доказать, что в произвольном выпуклом 2n-угольнике найдётся диагональ, не параллельная ни одной из его сторон. Что больше: 792 или 891? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 83]
Какое число больше: 3111 или 1714?
Что больше
Докажите, что 2100 + 3100 < 4100.
Что больше: 792 или 891?
Докажите, что 479 < 2100 + 3100 < 480.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 83]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке