|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1. Докажите, что число 11...1 (1986 единиц) имеет по крайней мере На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики? Доказать, что при чётном n 20n + 16n – 3n – 1 делится на 323. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Через n!! обозначается произведение n(n – 2)(n – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
Доказать, что при чётном n 20n + 16n – 3n – 1 делится на 323.
Доказать, что (2n – 1)n – 3 делится на 2n – 3 при любом n.
Доказать, что n³ + 5n делится на 6 при любом целом n.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|