Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

С помощью циркуля и линейки постройте квадрат, три вершины которого лежали бы на трёх данных параллельных прямых.

Вниз   Решение


В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что  BK = MN.

ВверхВниз   Решение


На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i j угол между векторами и – острый или прямой.

ВверхВниз   Решение


Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что  AB1AC1 = CA1CB1 = BC1BA1.  Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC.

ВверхВниз   Решение


2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и вынимать яблоки из корзин.
Доказать, что можно добиться того, чтобы во всех оставшихся корзинах было поровну яблок, а общее число яблок было не меньше 100.

ВверхВниз   Решение


Доказать, что  1·2·3 + 2·3·4 + ... + 98·99·100 ≠ 19891988.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 31278  (#06)

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 6,7,8

Доказать, что  1·2·3 + 2·3·4 + ... + 98·99·100 ≠ 19891988.

Прислать комментарий     Решение

Задача 31279  (#07)

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти все натуральные числа p, что p,  p² + 4  и  p² + 6  – простые числа.

Прислать комментарий     Решение

Задача 31280  (#08)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что число вида  n4 + 2n2 + 3  не может быть простым.

Прислать комментарий     Решение

Задача 31281  (#09)

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Доказать, что число  2 + 4 + 6 + ... + 2n  не может быть  a) квадратом;  б) кубом целого числа.

Прислать комментарий     Решение

Задача 31282  (#10)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7,8

Решить в целых числах:  2x + 5y = xy – 1.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .