ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

После того, как Клайв собрал и завел свои часы (см. задачу 32798), поставив их по дедушкиным, они стали идти в обратную сторону. Сколько раз в сутки они покажут правильное время?

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 188]      



Задача 104119

Темы:   [ Куб ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 3-
Классы: 7,8,9

На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?
Прислать комментарий     Решение


Задача 105194

Темы:   [ Раскраски ]
[ Метод координат на плоскости ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 7,8,9

Прямая раскрашена в два цвета. Докажите, что найдётся отрезок, оба конца и середина которого покрашены в один и тот же цвет.
Прислать комментарий     Решение


Задача 30292

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 6,7

Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

Прислать комментарий     Решение

Задача 32780

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7,8

В строчку написано 37 чисел так, что сумма каждых шести подряд идущих чисел равна 29. Первое число 5. Каким может быть последнее число?

Прислать комментарий     Решение

Задача 32799

Тема:   [ Задачи на движение ]
Сложность: 3-
Классы: 7,8

После того, как Клайв собрал и завел свои часы (см. задачу 32798), поставив их по дедушкиным, они стали идти в обратную сторону. Сколько раз в сутки они покажут правильное время?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .