Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Из полоски бумаги шириной 1 см склеили цилиндрическое кольцо с длиной окружности 4 см. Можно ли из этого кольца изготовить квадрат, имеющий площадь: а) 1 кв.см; б) 2 кв.см. Бумагу разрешается склеивать, складывать, но НЕЛЬЗЯ резать.

Вниз   Решение


Автор: Рожкова М.

Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.

ВверхВниз   Решение


Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

ВверхВниз   Решение


На плоскости начерчен треугольник и в нём отмечены две точки. Известно, что какой-то из углов треугольника равен 58°, какой-то из остальных – 59°, какая-то из отмеченных точек является центром вписанной окружности, а другая – центром описанной. Используя только линейку без делений, определите, где какой угол и где какая точка.

ВверхВниз   Решение


Докажите, что если M' и N' — образы многоугольников M и N при аффинном преобразовании, то отношение площадей M и N равно отношению площадей M' и N'.

ВверхВниз   Решение


Решите уравнение  3x + 5y = 7  в целых числах.

ВверхВниз   Решение


Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


В пространстве отмечены пять точек. Известно, что это центры сфер, четыре из которых попарно касаются извне и касаются изнутри пятой сферы. При этом невозможно определить, какая точка является центром объемлющей сферы. Найдите отношение радиусов наибольшей и наименьшей сферы.

ВверхВниз   Решение


Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

ВверхВниз   Решение


Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

ВверхВниз   Решение


На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?

ВверхВниз   Решение


Найдите углы выпуклого четырёхугольника ABCD, в котором $ \angle$BAC = 30o, $ \angle$ACD = 40o, $ \angle$ADB = 50o, $ \angle$CBD = 60o и $ \angle$ABC + $ \angle$ADC = 180o.

ВверхВниз   Решение


На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
  S1 – сумма расстояний от точки А до всех красных точек плюс сумма расстояний от точки В до всех синих точек;
  S2 – сумма расстояний от точки А до всех синих точек плюс сумма расстояний от точки В до всех красных точек.
Доказать, что  S1S2.

Вверх   Решение

Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 644]      



Задача 33141

Тема:   [ Четность и нечетность ]
Сложность: 3
Классы: 7,8

На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
  S1 – сумма расстояний от точки А до всех красных точек плюс сумма расстояний от точки В до всех синих точек;
  S2 – сумма расстояний от точки А до всех синих точек плюс сумма расстояний от точки В до всех красных точек.
Доказать, что  S1S2.

Прислать комментарий     Решение

Задача 35591

Темы:   [ Шахматная раскраска ]
[ Куб ]
Сложность: 3
Классы: 7,8,9

Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?
Прислать комментарий     Решение


Задача 35780

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7?

Прислать комментарий     Решение

Задача 35832

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7

Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Докажите, что найдётся столбец, произведение чисел в котором тоже отрицательно.

Прислать комментарий     Решение

Задача 35834

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Найти наибольшее значение, которое может принимать выражение  aek – afh + bfg – bdk + cdh – ceg,  если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .