ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны. AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что: Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1. Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом? В треугольнике ABC AB = BC = 6. На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что BD : DC = 2 : 1. Докажите, что 1/22+1/32+1/42+…+1/n2<1 |
Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 7526]
В пространстве заданы три луча: DA, DB и DC,
имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°.
Сфера пересекает луч DA в точках A1 и A2, луч
DB – в точках B1 и B2, луч DC
– в точках C1 и C2.
Найдите площадь треугольника A2B2C2,
если площади треугольников DA1B1,
DA1C1, DB1C1 и
DA2B2 равны соответственно
Каждая из сторон выпуклого четырехугольника пересекает некоторую окружность в двух точках, причем окружность высекает на сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.
Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом?
Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Докажите, что 1/22+1/32+1/42+…+1/n2<1
Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке