ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.

Вниз   Решение


Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором  s ≥ 1  существуют такие многочлены  A0(x), A1(x), ..., As(x)  и  R1(x), ..., Rs(x),  что  degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
    P(x) = Q(x)A0(x) + R1(x),
    Q(x) = R1(x)A1(x) + R2(x),
    R1(x) = R2(x)A2(x) + R3(x),
      ...
    Rs–2(x) = Rs–1(x)As–1(x) + Rs(x),
    Rs–1(x) = Rs(x)As(x)
и  (P(x), Q(x)) = Rs(x).

ВверхВниз   Решение


Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


ВверхВниз   Решение


Доказать, что произведение n первых простых чисел не является полным квадратом.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 810]      



Задача 35259

Темы:   [ Индукция (прочее) ]
[ Тождественные преобразования ]
Сложность: 2+
Классы: 7,8,9

Известно, что  x + 1/x  – целое число. Докажите, что  xn + 1/xn  – также целое при любом целом n.

Прислать комментарий     Решение

Задача 35269

Темы:   [ Комбинаторика орбит ]
[ Правило произведения ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8,9

Гайка имеет форму правильной шестиугольной призмы. Каждая боковая грань гайки покрашена в один из трёх цветов: белый, красный или синий, причём соседние грани выкрашены в разные цвета. Сколько существует различных по раскраске гаек? (Для раскраски гайки не обязательно использовать все три краски.)

Прислать комментарий     Решение

Задача 35282

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Решить в целых числах уравнение  xy = x + y.

Прислать комментарий     Решение

Задача 35288

Темы:   [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 6,7,8

Доказать, что произведение n первых простых чисел не является полным квадратом.

Прислать комментарий     Решение

Задача 35289

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 2+
Классы: 7,8,9

Доказать, что дробь $\frac{12n+1}{30n+1}$ несократима.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .