ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма двух противоположных сторон описанного четырёхугольника равна 10, а его площадь равна 12. Найдите радиус окружности, вписанной в этот четырёхугольник.

   Решение

Задачи

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 7526]      



Задача 52565

Темы:   [ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3
Классы: 8,9

AB и AC — хорды окружности; $ \cup$ AB = 110o, $ \cup$ AC = 40o. Найдите угол BAC.

Прислать комментарий     Решение


Задача 52575

Темы:   [ Диаметр, основные свойства ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Основание равностороннего треугольника служит диаметром окружности. На какие части делятся стороны треугольника полуокружностью, а полуокружность — сторонами треугольника?

Прислать комментарий     Решение


Задача 52613

Темы:   [ Построение треугольников по различным элементам ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ и вписанный угол ]
[ ГМТ - окружность или дуга окружности ]
[ Метод ГМТ ]
Сложность: 3
Классы: 8,9

Постройте треугольник по основанию, углу при вершине и медиане, проведенной к основанию.

Прислать комментарий     Решение


Задача 52695

Темы:   [ Описанные четырехугольники ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Сумма двух противоположных сторон описанного четырёхугольника равна 10, а его площадь равна 12. Найдите радиус окружности, вписанной в этот четырёхугольник.

Прислать комментарий     Решение


Задача 52732

Темы:   [ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Из точки A проведены две прямые, касающиеся окружности радиуса R в точках C и B, причём треугольник ABC — равносторонний. Найдите его площадь.

Прислать комментарий     Решение


Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .