ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Найдите на прямой AB точку M, для которой
сумма радиусов описанных окружностей треугольников ACM и BCM
была бы наименьшей.
В прямой угол вписана окружность. Хорда, соединяющая точки касания, равна 2. Найдите расстояние от центра окружности до этой хорды.
Тане было 16 лет 19 месяцев назад, а Мише будет 19 лет через 16 месяцев. Кто из них старше? Ответ объясните. Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника? Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны. |
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 6702]
Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной.
Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны.
На диагонали AC квадрата ABCD взята точка M, причём AM = AB. Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что BH = HM = MC.
Дан треугольник ABC. На продолжении стороны AC за точку A
отложен отрезок AD = AB, а за точку C – отрезок CE = CB.
В треугольнике ABC медиана BD равна половине стороны AC. Найдите угол B треугольника.
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке