Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Известно, что каждое из целых чисел a, b, c, d делится на  ab – cd.  Докажите, что  ab – cd  равно либо 1, либо –1.

Вниз   Решение


Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.

ВверхВниз   Решение


Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.)

ВверхВниз   Решение


Дан треугольник ABC. На продолжении стороны AC за точку A отложен отрезок  AD = AB,  а за точку C – отрезок  CE = CB.
Найдите углы треугольника DBE, зная углы треугольника ABC.

Вверх   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 6702]      



Задача 53333

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной.

Прислать комментарий     Решение

Задача 53353

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны.

Прислать комментарий     Решение

Задача 53355

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3-
Классы: 8,9

На диагонали AC квадрата ABCD взята точка M, причём  AM = AB.  Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что  BH = HM = MC.

Прислать комментарий     Решение

Задача 53375

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Дан треугольник ABC. На продолжении стороны AC за точку A отложен отрезок  AD = AB,  а за точку C – отрезок  CE = CB.
Найдите углы треугольника DBE, зная углы треугольника ABC.

Прислать комментарий     Решение

Задача 53377

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC медиана BD равна половине стороны AC. Найдите угол B треугольника.

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .