Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.

Вниз   Решение


Радиус окружности равен 25; две параллельные хорды равны 14 и 40. Найдите расстояние между ними.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы.

ВверхВниз   Решение


Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его первая и четвёртая цифры – не нули.
Докажите, что, переставив цифры в данном числе, можно получить другое число, тоже кратное 37 и не начинающееся с нуля.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус описанной сферы.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM = CP,  BN = DQ,  BM = DP,  NC = QA.  Докажите, что ABCD и MNPQ – параллелограммы.

ВверхВниз   Решение


а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь проводов разного цвета?

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

ВверхВниз   Решение


Перпендикуляр, опущенный из вершины прямоугольника на диагональ, делит прямой угол на две части в отношении  1 : 3.
Найдите угол между этим перпендикуляром и другой диагональю.

ВверхВниз   Решение


На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём  MN || AB  и  MN = AM.
Найдите угол BAN, если  ∠B = 45°  и  ∠C = 60°.

Вверх   Решение

Задачи

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 7526]      



Задача 53425

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Через середину M отрезка с концами на двух параллельных прямых проведена прямая, пересекающая эти прямые в точках A и B.
Докажите, что M также середина AB.

Прислать комментарий     Решение

Задача 53437

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Угол при основании BC равнобедренного треугольника ABC вдвое больше угла при вершине, BD – биссектриса треугольника. Докажите, что  AD = BC.

Прислать комментарий     Решение

Задача 53439

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём  MN || AB  и  MN = AM.
Найдите угол BAN, если  ∠B = 45°  и  ∠C = 60°.

Прислать комментарий     Решение

Задача 53445

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3-
Классы: 8,9

Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.

Прислать комментарий     Решение

Задача 53449

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы между биссектрисами ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3-
Классы: 8,9

Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём  ∠AHB = 120°,  а биссектрисы, проведённые из вершин B и C, – в точке K, причём  ∠BKC = 130°.  Найдите угол ABC.

Прислать комментарий     Решение

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .