Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.

Вниз   Решение


Радиус окружности равен 25; две параллельные хорды равны 14 и 40. Найдите расстояние между ними.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы.

ВверхВниз   Решение


Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его первая и четвёртая цифры – не нули.
Докажите, что, переставив цифры в данном числе, можно получить другое число, тоже кратное 37 и не начинающееся с нуля.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус описанной сферы.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM = CP,  BN = DQ,  BM = DP,  NC = QA.  Докажите, что ABCD и MNPQ – параллелограммы.

ВверхВниз   Решение


а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь проводов разного цвета?

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

ВверхВниз   Решение


Перпендикуляр, опущенный из вершины прямоугольника на диагональ, делит прямой угол на две части в отношении  1 : 3.
Найдите угол между этим перпендикуляром и другой диагональю.

Вверх   Решение

Задачи

Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 7526]      



Задача 53484

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 и 14.

Прислать комментарий     Решение

Задача 53487

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Перпендикуляр, опущенный из вершины прямоугольника на диагональ, делит прямой угол на две части в отношении  1 : 3.
Найдите угол между этим перпендикуляром и другой диагональю.

Прислать комментарий     Решение

Задача 53488

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

В прямоугольный треугольник, каждый катет которого равен 6, вписан прямоугольник, имеющий с треугольником общий угол.
Найдите периметр прямоугольника.

Прислать комментарий     Решение

Задача 53493

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Точки пересечения биссектрис внутренних углов параллелограмма являются вершинами некоторого четырёхугольника. Докажите, что этот четырёхугольник — прямоугольник.

Прислать комментарий     Решение


Задача 53501

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3-
Классы: 8,9

Высота, проведённая из вершины тупого угла равнобедренной трапеции, делит большее основание на части, равные a и b (a > b). Найдите среднюю линию трапеции.

Прислать комментарий     Решение


Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .