Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 6702]
Докажите, что высота неравнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, меньше половины гипотенузы.
На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC (AM = AN).
Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.
Равнобедренный треугольник ABC с основанием BC повернули
вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Докажите, что прямые AB и B1C параллельны.
Прямая, проведённая через вершину C треугольника ABC параллельно его биссектрисе BD, пересекает продолжение стороны AB в точке M.
Найдите углы треугольника MBC, если ∠ABC = 110°.
Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.
Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 6702]